
JOINS:

To determine an employee’s department name, you compare the value in the
DEPARTMENT_ID column in the EMPLOYEES table with the DEPARTMENT_ID values
in the DEPARTMENTS table. The relationship between the EMPLOYEES and
DEPARTMENTS tables is an equijoin—that is, values in the DEPARTMENT_ID column
on both tables must be equal. Frequently, this type of join involves primary and foreign key
complements.
Note: Equijoins are also called simple joins or inner joins.

Use a decision matrix for simplifying writing joins. For example, if you want to display the
name and department number of all the employees who are in the same department as
Goyal, you can start by making the following decision tree:

What?
Columns to Display

last_name
department_name

Where?
Originating Table

Employees
Departments

How?
Condition

last_name=’Goyal’
employees.department_id =
departments.department_id

The first column gives the column list in the SELECT statement, the second column gives
the tables for the FROM clause, and the third column gives the condition for the WHERE
clause.

Retrieving Records with Equijoins

SELECT employees.employee_id, employees.last_name,
 employees.department_id, departments.department_id,
 departments.location_id
FROM employees, departments
WHERE employees.department_id = departments.department_id;

The SELECT clause specifies the column names to retrieve:
employee last name, employee number, and department number, which are columns in
the EMPLOYEES table department number, department name, and location ID, which are
columns in the DEPARTMENTS table.

The FROM clause specifies the two tables that the database must access:
EMPLOYEES table
DEPARTMENTS table

The WHERE clause specifies how the tables are to be joined:
EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID

Because the DEPARTMENT_ID column is common to both tables, it must be prefixed by
the table name to avoid ambiguity.

Using the AND Operator
In addition to the join, you may have criteria for your WHERE clause to restrict the rows
under consideration for one or more tables in the join. For example, to display employee
Matos' department number and department name, you need an additional condition in the
WHERE clause.
SELECT last_name, employees.department_id,
 department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 AND last_name = 'Matos';

Qualifying Ambiguous Column Names
You need to qualify the names of the columns in the WHERE clause with the table name
to avoid ambiguity. Without the table prefixes, the DEPARTMENT_ID column could be
from either the DEPARTMENTS table or the EMPLOYEES table. It is necessary to add
the table prefix to execute your query.
If there are no common column names between the two tables, there is no need to qualify
the columns. However, using the table prefix improves performance, because you tell the
Oracle Server exactly where to find the columns.
The requirement to qualify ambiguous column names is also applicable to columns that
may be ambiguous in other clauses, such as the SELECT clause or the ORDER BY
clause.

Table Aliases
Qualifying column names with table names can be very time consuming, particularly if
table names are lengthy. You can use table aliases instead of table names. Just as a
column alias gives a column another name, a table alias gives a table another name.
Table aliases help to keep SQL code smaller, therefore using less memory.
Notice how table aliases are identified in the FROM clause in the example. The table
name is specified in full, followed by a space and then the table alias. The EMPLOYEES
table has been given an alias of e, and the DEPARTMENTS table has an alias of d.

Guidelines:

• Table aliases can be up to 30 characters in length, but shorter is better.
• If a table alias is used for a particular table name in the FROM clause, then that

table alias must be substituted for the table name throughout the SELECT
statement.

• Table aliases should be meaningful.
• The table alias is valid only for the current SELECT statement.

SELECT e.employee_id, e.last_name, e.department_id,
 d.department_id, d.location_id
FROM employees e , departments d
WHERE e.department_id = d.department_id;

Additional Search Conditions
Sometimes you may need to join more than two tables. For example, to display the last
name, the department name, and the city for each employee, you have to join the
EMPLOYEES, DEPARTMENTS, and LOCATIONS tables.

 SELECT e.last_name, d.department_name, l.city
 FROM employees e, departments d, locations l
 WHERE e.department_id = d.department_id
 AND d.location_id = l.location_id;
Non-Equijoins
A non-equijoin is a join condition containing something other than an equality operator.
The relationship between the EMPLOYEES table and the JOB_GRADES table has an
example of a non-equijoin. A relationship between the two tables is that the SALARY
column in the EMPLOYEES table must be between the values in the LOWEST_SALARY
and HIGHEST_SALARY columns of the JOB_GRADES table. The relationship is obtained
using an operator other than equals (=).

SELECT e.last_name, e.salary, j.grade_level
FROM employees e, job_grades j
WHERE e.salary BETWEEN j.lowest_sal AND j.highest_sal;

It is important to note that all employees appear exactly once when this query is executed.
No employee is repeated in the list. There are two reasons for this:

• None of the rows in the job grade table contain grades that overlap. That is, the
salary value for an employee can lie only between the low salary and high salary
values of one of the rows in the salary grade table.

• All of the employees’ salaries lie within the limits provided by the job grade table.
That is, no employee earns less than the lowest value contained in the
LOWEST_SAL column or more than the highest value contained in the
HIGHEST_SAL column.

Note: Other conditions, such as <= and >= can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using BETWEEN.
Table aliases have been specified in the example for performance reasons, not because
of possible ambiguity.

BETWEEN … AND … is actually translated by the Oracle server to a pair of AND
conditions (a >= lower limit) and (a <= higher limit) and IN (…) is translated by the Oracle
server to a set of OR conditions (a = value1 OR a = value2 OR a = value3). So using
BETWEEN … AND … , IN(…) has no performance benefits; the benefit is logical
simplicity.

Self-Join: Joining a Table to Itself
Sometimes you need to join a table to itself. To find the name of each employee’s
manager, you need to join the EMPLOYEES table to itself, or perform a self join. For
example, to find the name of Whalen’s manager, you need to:

• Find Whalen in the EMPLOYEES table by looking at the LAST_NAME column.
• Find the manager number for Whalen by looking at the MANAGER_ID column.

Whalen’s manager number is 101.
• Find the name of the manager with EMPLOYEE_ID 101 by looking at the

LAST_NAME column. Kochhar’s employee number is 101, so Kochhar is Whalen’s
manager.

In this process, you look in the table twice. The first time you look in the table to find
Whalen in the LAST_NAME column and MANAGER_ID value of 101. The second time
you look in the EMPLOYEE_ID column to find 101 and the LAST_NAME column to find
Kochhar.

SELECT worker.last_name || ' works for '
 || manager.last_name
FROM employees worker, employees manager
WHERE worker.manager_id = manager.employee_id ;

This example joins the EMPLOYEES table to itself. To simulate two tables in the FROM
clause, there are two aliases, namely w and m, for the same table, EMPLOYEES.
In this example, the “WHERE” clause contains the join that means “where a worker’s
manager number matches the employee number for the manager.”

(The column heading in the result of the query on the slide seems meaningless. A
meaningful column alias should have been used instead.)

There are only 19 rows in the output, but there are 20 rows in the EMPLOYEES table.
This occurs because employee King, who is the president, does not have a manager.

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row will not appear in the query result. For
example, in the equijoin condition of EMPLOYEES and DEPARTMENTS tables, employee
Grant does not appear because there is no department ID recorded for her in the
EMPLOYEES table. Instead of seeing 20 employees in the result set, you see 19 records.

 SELECT e.last_name, e.department_id, d.department_name
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

Using Outer Joins to Return Records with No Direct Match
The missing rows can be returned if an outer join operator is used in the join condition.
The operator is a plus sign enclosed in parentheses (+), and it is placed on the “side” of
the join that is deficient in information. This operator has the effect of creating one or more
null rows, to which one or more rows from the nondeficient table can be joined.
In the syntax:
 table1.column = is the condition that joins (or relates) the tables together.

 table2.column (+) is the outer join symbol, which can be placed on either side of
the WHERE clause condition, but not on both sides. (Place the outer join symbol following
the name of the column in the table without the matching rows.)

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id(+) = d.department_id ;

This example displays employee last names, department ID’s and department names.
The Contracting department does not have any employees. The empty value is shown in
the output shown.

Outer Join Restrictions

• The outer join operator can appear on only one side of the expression—the side
that has information missing. It returns those rows from one table that have no
direct match in the other table.

• A condition involving an outer join cannot use the IN operator or be linked to
another condition by the OR operator.

Oracle SQL: 1999
Equi-Join Natural/Inner Join
Outer-Join Left Outer Join
Self-Join Join ON
Non-Equi-Join Join USING
Cartesian Product Cross Join

Cross Joins

The CROSS JOIN clause produces the cross product of two tables which is the same as a
Cartesian product between the two tables.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

 Corresponding Oracle syntax:

SELECT last_name, department_name
FROM employees, departments;

Natural Joins
• Based on all columns in the two tables that have the same name.
• Selects rows from the two tables that have equal values in all matched columns.
• Returns an error if the columns having the same names contain different data types.

SELECT department_id, department_name,
location_id, city
FROM departments
NATURAL JOIN locations ;

Corresponding Oracle syntax:

SELECT d.department_id, d.department_name, d.location_id, l.city
FROM departments d, locations l
WHERE d.location_id = l.location_id;

JOIN USING:
Natural joins use all columns with matching names and data types to join the tables. The
USING clause can be used to specify only those columns that should be used for an
equijoin. The columns referenced in the USING clause should not have a qualifier (table
name or alias) anywhere in the SQL statement.

For example, this statement is valid:

SELECT l.city, d.department_name
FROM locations l JOIN departments d USING (location_id)
WHERE location_id = 1400;

This statement is invalid because the LOCATION_ID is qualified in the WHERE clause:

SELECT l.city, d.department_name
FROM locations l JOIN departments d USING (location_id)
WHERE d.location_id = 1400;

 ORA-25154: column part of USING clause cannot have qualifier

The same restriction applies to NATURAL joins also. Therefore columns that have the
same name in both tables have to be used without any qualifiers.

QUESTION: If you want to show information from two tables which have no columns with
matching names or data types, how would you do that?

ANSWER: Join with another table which has matching columns for each of the other tables.

EXAMPLE:

Give last names and countries where each employee was based.

Select last_name, country_id
FROM employees e JOIN departments d
ON e.department_id=d.department_id
JOIN locations l
ON d.location_id=l.location_id

(Notice that the departments table is used for a join, although no data from that table is
shown in the results from the query.)

Inner and Outer Joins

The join of two tables returning only matched rows is an inner join.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
JOIN departments d
ON (e.department_id = d.department_id)

Left/right outer join: A join between two tables that returns the results of the inner join
as well as unmatched rows in the left (or right) tables is a left (or right) outer join.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id)

The above query retrieves all rows in the EMPLOYEES table, which is the left table even if
there is no match in the DEPARTMENTS table.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id)

The Oracle proprietary syntax is as follows for the left outer join:

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE d.department_id (+) = e.department_id;

Full outer join: A join between two tables that returns the results of an inner join as well
as the results of a left and right join is a full outer join.

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if
there is no match in the EMPLOYEES table.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
FULL OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

This can be done with Oracle syntax, but you don’t have to know how to do this:

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id (+) = d.department_id
UNION
SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id (+)

You can apply additional conditions in the WHERE clause. The example shown performs
a join on the EMPLOYEES and DEPARTMENTS tables, and, in addition, displays only
employees with a manager ID equal to 149.

SELECT e.employee_id, e.last_name, e.department_id, d.department_id,
d.location_id
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149 ;

	Cross Joins
	Natural Joins
	 Inner and Outer Joins

