
Copyright © 2009, Oracle. All rights reserved.

DEFAULT Values, MERGE, and
Multi-Table Inserts

2

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

What Will I Learn?
In this lesson, you will learn to:

• Understand when to specify a DEFAULT
value

• Construct and execute a MERGE statement
• Construct and execute DML statements

using subqueries
• Construct and execute multi-table inserts

3

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
Up to now, you have been updating data using a
single INSERT statement. It has been relatively
easy when adding records one at a time, but
what if your company is very large and utilizes a
data warehouse to store sales records and
customer, payroll, accounting, and personal
data?

In this case, data is probably coming in from
multiple sources and being managed by multiple
people. Managing data one record at a time
could be very confusing and very time
consuming.

4

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Why Learn It?
How do you determine what has been newly
inserted or what has been recently changed?

In this lesson, you will learn a more efficient
method to update and insert data using a
sequence of conditional INSERT and UPDATE
commands in a single atomic statement.

You will also learn how to retrieve data from one
single subquery and INSERT the rows returned
into more than one target table.

As you extend your knowledge in SQL, you'll
appreciate effective ways to accomplish your
work.

5

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
DEFAULT

A column in a table can be given a default value. This
option prevents null values from entering the columns if a
row is inserted without a specified value for the column.

Using default values also allows you to control where and
when the default value should be applied. The default
value can be a literal value, an expression, or a SQL
function, such as SYSDATE and USER, but the value
cannot be the name of another column.

The default value must match the data type of the column.

DEFAULT can be specified for a column when the table is
created or altered.

Presenter
Presentation Notes
This slide begins a further explanation of default values. A column in a table can be given a default value at the time the table is created. Assigning default values prevents null values from existing in the column. Default values can be a literal value, an expression, or a SQL function such as SYSDATE or USER. Default values must match the data type of the column. The following slide shows an example.

6

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
The example below shows a default value being specified
at the time the table is created:

CREATE TABLE my_employees (
hire_date DATE DEFAULT SYSDATE,
first_name VARCHAR2(15),
last_name VARCHAR2(15));

When rows are added to this table, SYSDATE will be
added to any row that does not explicitly specify a
hire_date value.

Presenter
Presentation Notes
In this slide we show the creation of a table called ‘my_employees.’ It has three columns: hire_date, first_name, and last_name. Note that the first column is a date column and the word ‘DEFAULT’ is used with ‘SYSDATE’. This ensures that whenever a row is inserted into this table, the hire_date column will not be blank, but rather will contain the current date if no date is specified. In other words, if that column is left out of the insert statement, the current date will be entered. Any other date can be entered as part of the insert statement. Test this statement on your own in Oracle Application Express because we will use this table in the next slide.

7

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Explicit DEFAULT with INSERT
Explicit defaults can be used in INSERT and UPDATE
statements. The INSERT example using the
DEPARTMENTS table shows the explicit use of DEFAULT.

INSERT INTO departments
(department_id, department_name, manager_id)

VALUES
(300, 'Engineering', DEFAULT);

If a default value was set for the manager_id column, Oracle
sets the column to the default value. However, if no default
value was set when the column was created, Oracle inserts
a null value.

Presenter
Presentation Notes
This slide demonstrates how to use the DEFAULT keyword when inserting data into a table or when updating a table. This example shows that the DEFAULT keyword is entered for the manager_id. Note that if no default value exists for the manager_id, a null is entered. Using the my_employees table we just created, let’s insert a row into the table using Application Express.

We are going to insert data for the employee, Jan Long, in the my_employees table. Let’s assume she was hired on November 12th, 2007. Type the following: INSERT INTO my_employees VALUES (’12-NOV-07’, ‘Jan’, ‘Long’).

Now, enter another employee, Peter Maxwell, using the default keyword for the date. Type: INSERT INTO my_employees (first_name, last_name) VALUES (‘Peter’,’Maxwell’). You can check the entries by running a SELECT star FROM my_employees.

Now, update the date for Jan Long by changing the date to the default value by typing: UPDATE my_employees SET hire_date = DEFAULT WHERE last_name = ‘Long’. Confirm the change occurred with a SELECT statement.

8

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Explicit DEFAULT with UPDATE
Explicit defaults can be used in INSERT and UPDATE
statements. The UPDATE example using the Oracle
DEPARTMENTS table shows explicit use of DEFAULT.

UPDATE departments
SET manager_id = DEFAULT
WHERE department_id = 10;

If a default value was set for the department_id column,
Oracle sets the column to the default value. However, if no
default value was set when the column was created,
Oracle inserts a null value.

9

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
MERGE

Using the MERGE statement accomplishes
two tasks at the same time. MERGE will
INSERT and UPDATE simultaneously. If a
value is missing, a new one is inserted. If a
value exists, but needs to be changed,
MERGE will update it.

To perform these kinds of changes to
database tables, you need to have INSERT
and UPDATE privileges on the target table
and SELECT privileges on the source table.

Aliases can be used with the MERGE
statement.

Presenter
Presentation Notes
The MERGE statement is a powerful tool in database updating. The MERGE statement will actually look at two tables. It will compare the data in the two tables and then correct it if necessary. The MERGE statement is often used when two different databases are combined from a legacy system. Let’s look at a specific example.

10

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
MERGE SYNTAX
MERGE INTO destination-table USING source-table
ON matching-condition
WHEN MATCHED THEN UPDATE
SET ……
WHEN NOT MATCHED THEN INSERT
VALUES (……);
One row at a time is read from the source table, and its
column values are compared with rows in the destination table
using the matching condition. If a matching row exists in the
destination table, the source row is used to update column(s)
in the matching destination row.
If a matching row does not exist, values from the source row
are used to insert a new row into the destination table.

11

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
This example uses the EMPLOYEES table (alias e) as a data
source to insert and update rows in a copy of the table named
COPY_EMP (alias c).

MERGE INTO copy_emp c USING employees e
ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN UPDATE

SET
c.last_name = e.last_name,
c.department_id = e.department_id

WHEN NOT MATCHED THEN INSERT
VALUES (e.employee_id, e.last_name, e.department_id);

The next slide shows the result of this statement.

Presenter
Presentation Notes
The statement starts with MERGE INTO. The copy_emp table in this case is the table receiving the new information. The employees table is the table used for reference. The USING keyword connects these two tables together. Next comes the keyword ON. In this case, the rows are being compared according to the employee ids. Notice how we use table aliases in order to make this example a little shorter and easier to parse. The next part of the statement uses WHEN MATCHED THEN UPDATE and SET. In this case, the description from the employees table is being copied over to the last_name on the copy_emp table. The same happens with the department_id. The tables will now have matching values in each of these columns.

The last part of the statement includes the keywords WHEN NOT MATCHED THEN INSERT VALUES; this becomes the insert statement. What happens here is that when any employee is found in the employees table that has no matching employee_id in the copy_emp table, then the rows from that table are copied over from the items table to the copy items table.

12

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
MERGE INTO copy_emp c USING employees e

ON (c.employee_id = e.employee_id)
WHEN MATCHED THEN UPDATE

SET
c.last_name = e.last_name,

c.department_id = e.department_id
WHEN NOT MATCHED THEN INSERT

VALUES (e.employee_id, e.last_name,
e.department_id);

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
100 King 90
103 Hunold 60
142 Davies 50

EMPLOYEES (source table)

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID

100 Smith 40
103 Chang 30

COPY_EMP before the MERGE is executed

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
100 King 90
103 Hunold 60
142 Davies 50

COPY_EMP after the MERGE has executed

EMPLOYEES rows 100 and 103
have matching rows in COPY_EMP,
and so the matching COPY_EMP
rows were updated.

EMPLOYEE 142 had no matching
row, and so was inserted into
COPY_EMP.

13

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Multi-Table Inserts

Multi-table inserts are used when the same source data should be inserted into
more than one target table. This functionality is especially useful when you are
working in a data warehouse environment, where it is very common to move data
on a regular basis from the operational systems into a data warehouse for
analytical reporting and analysis.

Creating and managing data warehouses is one way of managing the sometimes
very high number of rows inserted into operational systems during a normal
working day.
Imagine, for instance, how many rows your mobile/cell telephone provider must
create daily.
At least one for each time you use your mobile/cell phone, and how many calls do
you make and receive a day?
Then add the number of SMS’s you send and receive.
Add to that your mobile surfing and downloads of ringtones, wallpapers, games
and other mobile applications.
Multiply that number by the number of customers.
That might give you an idea of the amount of data the telecommunication
companies have to manage.
These rows may have to be inserted into more than one table in the data
warehouse, so if we can just SELECT them once and then replicate them, that will
improve the performance.

14

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Multi-Table Inserts

Multi-table inserts can be unconditional or conditional. In an unconditional multi-
table insert Oracle will insert all rows returned by the subquery into all table insert
clauses found in the statement.

In a conditional multi-table insert you can specify either ALL or FIRST.
ALL
If you specify ALL, the default value, then the database evaluates each WHEN
clause regardless of the results of the evaluation of any other WHEN clause.
For each WHEN clause whose condition evaluates to true, the database executes
the corresponding INTO clause list.
FIRST
If you specify FIRST, then the database evaluates each WHEN clause in the order
in which it appears in the statement. For the first WHEN clause that evaluates to
true, the database executes the corresponding INTO clause and skips subsequent
WHEN clauses for the given row.
ELSE clause
For a given row, if no WHEN clause evaluates to true, then:
If you have specified an ELSE clause, then the database executes the INTO clause
list associated with the ELSE clause.
If you did not specify an else clause, then the database takes no action for that row.

15

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Multi-Table Inserts
Multi-table insert statement syntax is as follows:

INSERT ALL INTO clause VALUES clause SUBQUERY

INSERT ALL
INTO all_calls VALUES (caller_id, call_timestamp, call_duration,

call_format)
INTO police_record_calls VALUES (caller_id, call_timestamp,

recipient_caller)
SELECT caller_id, call_timestamp, call_duration, call_format ,

recipient_caller)
FROM calls
WHERE TRUNC(call_timestamp) = TRUNC(SYSDATE)

16

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Tell Me / Show Me
Multi-Table Inserts Conditional

INSERT ALL
WHEN call_ format IN (‘tlk’,’txt’,’pic’) THEN

INTO all_calls VALUES (caller_id, call_timestamp, call_duration, call_format)
WHEN call_ format IN (‘tlk’,’txt’) THEN

INTO police_record_calls VALUES (caller_id, call_timestamp, recipient_caller)
WHEN call_duration < 50 AND call_type = ‘tlk’ THEN

INTO short_calls VALUES (caller_id, call_timestamp, call_duration)
WHEN call_duration > = 50 AND call_type = ‘tlk’ THEN

INTO long_calls VALUES (caller_id, call_timestamp, call_duration)
SELECT caller_id, call_timestamp, call_duration, call_format , recipient_caller)
FROM calls
WHERE TRUNC(call_timestamp) = TRUNC(SYSDATE)

Presenter
Presentation Notes
SQL syntax allows for multi-table inserts when the same source data must be inserted into more than one target table. It also allows for multiple-row inserts using a single insert statement. The subquery provides the source data, which may be one-to-many rows and whatever columns are specified. It is executed first. WHEN-THEN provides conditional logic for determining when and where to insert the returned data. WHEN and THEN are optional and may appear multiple times in this statement. Each WHEN-THEN pair will be followed by its own INTO and values clauses, which will name the table and columns that receive the data. Every row returned by the subquery is processed by the WHEN-THEN clause individually. If the ALL qualifier is used, then every WHEN-THEN pair is processed. If the first qualifier is used, Oracle will terminate the conditional testing for a returned row as soon as a match is found and the row is inserted.

17

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

In this lesson you have learned to:

• Understand when to specify a DEFAULT value
• Construct and execute a MERGE statement
• Construct and execute DML statements using

subqueries
• Construct and execute multi-table inserts

SummarySummary

18

DEFAULT Values, MERGE, and Multi-Table Inserts

Copyright © 2009, Oracle. All rights reserved.

Summary
Practice Guide

The link for the lesson practice guide can be
found in the course resources in Section 0.

	DEFAULT Values, MERGE, and Multi-Table Inserts
	What Will I Learn?
	Why Learn It?
	Why Learn It?
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Tell Me / Show Me
	Summary
	Summary

